

LNAPL metrics

Randall Charbeneau, P.E. Professor of Civil Engineering, University of Texas

&

Mark Adamski, P.G. Technical Specialist and Environmental Business Manager, BP America

LNAPL thickness varies without change in LNAPL volume in the ground

between Water Table Elevation and LNAPL Layer Thickness in a Monitoring Well

Classical behavior (unconfined system)

Figure from Charbeneau (2005)

Confined LNAPL behavior between Water Table Elevation and LNAPL - Layer Thickness in a Monitoring Well

Another example of LNAPL thickness variation

Hydrograph - Confined LNAPL

Courtesy of Andrew Kirkman

LNAPL Thickness and Recovery Time

(Three real examples)

AMR/606-D Hydrograph (well from previous slide)

AMR/606-D Hydrograph

LNAPL Transmissivities and Thicknesses

		Recovery Rate Based on Baildown		
	Approximate	Test Data		
	Gauged		1 GPM - Water	LNAPL
	Thickness	LNAPL	Enhaced	Transmissivity
Location	(ft)	Skimming (GPD)	Recovery (GPD)	(ft²/day)
AMR/200-D	15	40	115	4
AMR/200-D AMR/185-6	15 30	40 0.4	115 0.7	4 0.01

- LNAPL thickness is no indication of LNAPL recoverability
- LNAPL thickness, in this case, is no indicator of additional LNAPL in the subsurface

Recovery Prior to Equilibrium Doesn't Increase Production

Gauged Recovery of LNAPL Thickness

Recovering from the well every 5 days doesn't produce more over an extend period than recovering every 10 or 12 days

LNAPL Metrics

LNAPL Thickness

- Inconsistent between hydraulic scenarios
- Inconsistent between soil types

LNAPL Recovery Rate

- More Robust Metric than LNAPL Thickness
- Need recovery system or pilot test data
- Operational variability and technology differences make it difficult to use across technologies and/or sites

Transmissivity

- Most universal (site and condition independent)
- Estimated with recovery data or field testing on monitoring wells
- Consistent across soil types
- Consistent between recovery technologies
- Consistent across confined, unconfined or perched conditions

Transmissivity provides a consistent measure of recoverability and impacts across different LNAPL plumes within one site or across multiple sites

Example LNAPL Evaluation

Distribution of LNAPL

- LNAPL analytical samples
- CPT/ROST borings
- Core borings submitted to geotechnical lab

Results Included

- Calculated mobility (i.e Transmissivity)
- Improved understanding of LNAPL distribution

Study Area Assessment (ROST borings)

2003 LNAPL Distribution

Rise in Water Level Causing Confined Conditions Across Study Area

2002-2003 LNAPL Evaluation Summary

Based on Assessment in 2003

- LNAPL type varied from light end of gasoline to heavier gas oil range
- LNAPL existed within varying soil types
- Confined and unconfined conditions existed
- Gauged LNAPL thickness not indicative of LNAPL recoverability

Transmissivity identified as best metric - it accounts for:

- Soil types
- LNAPL types
- Hydrogeologic conditions

LNAPL Transmissivity

2003 to 2006 Comparison - LNAPL Transmissivity

Key Points

- LNAPL thickness is a very poor LNAPL metric due to variations without changes in LNAPL volume
- LNAPL recovery rate is a good metric, but requires the data from well designed and maintained recovery system
- Transmissivity is a very useful metric for LNAPL decision making

Thank You